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In recent years a consistent theory describing measurements continuous in 
time in quantum mechanics has been developed. The result of such a mea- 
surement is a "trajectory" for one or more quantities observed with continu- 
ity in time. Applications are connected especially with detection theory in 
quantum optics. In such a theory of continuous measurements one can ask 
what is the state of the system given that a certain trajectory up to time t 
has been observed. The response to this question is the notion of a posteriori 
states and a "filtering" equation governing the evolution of such states: this 
turns out to be a nonlinear stochastic differential equation for density ma- 
trices or for pure vectors. The driving noise appearing in such an equation is 
not an external one, but its probability law is determined by the system itself 
(it is the probability measure on the trajectory space given by the theory of 
continuous measurements). 

1. I N S T R U M E N T S  A N D  "A P O S T E R I O R I "  S T A T E S  

In q u a n t u m  mechanics  no t  only  can ins tan taneous  measurements  be 
considered,  but  so can measuremen t s  cont inuous in time. By this we mean  
the s i tua t ion  in which one or  more  quant i t ies  are  fo l lowed in their  

dynamica l  evolu t ion  and  probab i l i t i e s  on their  " t r a j ec to ry  space"  are 
ex t rac ted  f rom q u a n t u m  mechanics .  A consis tent  theory  o f  measurements  
con t inuous  in t i m e  has been deve loped  (Davies ,  1969, 1970, 1971, 1976; 
Barchiell i  et al., 1982, 1983, 1985; Lupier i ,  1983; Barchiell i  and  Lupier i ,  
1985a,b; Barchielli ,  1986a,b; Holevo ,  1988, 1989) and  app l i ca t ions  worked  
out  (Sr in ivas  and  Davies ,  1981, 1982; Holevo ,  1982; Barchietli ,  1983, 1985, 
1987, 1988, 1990, 1991, 1993). 
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Now a natural question is: if during a continuous measurement a 
certain trajectory of the measured observable is registered, what is the state 
of the system soon after, conditioned upon this information (the a posteri- 
ori state)? By using ideas from the classical filtering theory for stochastic 
processes and the formulation of continuous measurements in terms of 
quantum stochastic differential equations (Barchielli and Lupieri, 1985a,b; 
Barchielli, 1986a) an It6 stochastic differential equation for the a posteriori 
states has been obtained and solved in some significant cases (Belavkin, 
1988, 1989a,b, 1990a,b,c, 1992; Belavkin and Staszewski, 1989, 1991; 
Chru~cifiski and Staszewski, 1992; Holevo, 1991; Staszewski and 
Staszewska, 1992). An alternative derivation is given in Di6si (1988a,b) and 
Barchielli and Belavkin (1991). 

The aim of this paper is to present the equation for a posteriori states 
in the context of the theory of measurements continuous in time. However, 
it is interestring to note that some particular forms of the same equation 
have been introduced in the context of dynamical reduction theories (Gisin, 
1984, 1986, 1989, 1990; Pearle, 1986; Di6si, 1989; Ghirardi et al., 1989, 
1990a,b, 1991; Nicrosini and Rimini, 1990; Gatarek and Gisin, 1991). 
Moreover, the same equation, or things related to it, are used for numerical 
simulations of master equations (Carmichael, 1993; Dum et al., 1992a,b; 
Gardiner et al., 1992; Molmer et al., 1993; Gisin and Percival, 1992a,b), 
mainly in quantum optics. 

Let us start by recalling the important notions of instrument and of a 
posteriori states. The notion of instrument has been introduced in the 
operational approach to quantum mechanics (Davies and Lewis, 1970). Let 
a quantum system be described in a separable Hilbert space off and denote 
by ~(off) and Y-(W) the Banach spaces of the bounded operators on off 
and the trace-class operators, respectively. If d is a linear map on Y-(off), 
its adjoint eg' is the linear map on ~(off) defined by Tr{a~r = 
Tr{~g'[a]0 }, Va e~(off), ~'Q e ~--(off). Let (f~, Z) be a measurable space (f~ a 
set and E a a-algebra of subsets of f~). An instrument (Davies and Lewis, 
1970; Davies 1976; Ozawa, 1984) (or operation-valued measure) J is a map 
from Y. into the space of the linear bounded operators on Y'(off) such that 
(i) J (B)  is completely positive (Lindblad, 1976) for any BeE,  (ii) 
~/J(B:)[O] = Je(UJ Bj)[Q] for any sequence of pairwise disjoint elements of 
E and any O in J (off )  (convergence in trace norm), and (iii) 
Tr{J(~)[0l } = Tr{Q }, ge ~ Y-(off). 

The instrument J is a measure: (i) is the positivity condition, (ii) is 
a-additivity, (iii) is normalization. The instruments represent measurement 
procedures and their interpretation is as follows. ~ is the set of all possible 
outcomes of the measurement [(s E) is called the value space] and the 
probability of obtaining the result e~ eB (BEE), when before the measure- 
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ment the system is in a state Q [QcJ-(Jr Q -> 0, Tr{Q} = 1], is given by 
P(BIQ ) := Tr{J(B)[Q] }. Let us note that the quantity J(B) ' [~]  turns out to 
be an effect-valued (Ludwig, 1967) measure, or positive-operator-valued 
measure, or nonorthogonal resolution of  the identity, and it represents an 
"observable" (Ludwig, 1970, p. 378). Moreover, let us consider a sequence 
of measurements represented by the instruments J l ,  ~ r 2 , . . . ,  J .  and per- 
formed in the natural order (J2 after J l  and so on), We assume any time 
specification to be included in the definition of the instruments (Heisenberg 
picture). Then, the joint probability of  the sequence of  results ~o~sB1, 
~o2eB 2 . . . . .  c0.cB.,  when the premeasurement  state is 6, is given by 

P(B, ,  B2 . . . .  , B .  [e) = T r { J . ( B . )  o J .  _~ (B.--1 ) . . . . .  ~'1 (B1)[6]} (1. l) 

Here o means composition of  maps. If  we consider the conditional proba- 
bility of  the results eY2eB2, �9 . . ,  co. s B .  given the first result col sB1, we can 
write 

P ( B 2 , . . . ,  B. ]B, ; 6) 

P ( B ,  , B >  . . . , B ,  le) 

- P(~l [e) 

= P ( B 2 , . . . ,  B ,  le(B,)) 

= T r { J ,  (B,)  . . . .  ~ J2  (B2)[o(B,)] } (1.2) 

where we have introduced the statistical operator Q(B1) representing the 
state after the first measurement, conditioned upon the result o)I~B 1. For 
a generic instrument J and set B, the conditioned state Q(B) is defined by 

J(B)[~o] _ J(B)Lo] 
~(B) - Tr{J(B)[Q]} - P(B]o) (1.3) 

In particular, by (ii) we obtain Q ( ~ ) = J ( ~ ) [ ~ ] .  By the definition of  
instrument, this quantity is linear in Q and it is a statistical operator if ~ is 
a state. We can call Q(~) the a priori state: if we know the premeasurement 
state Q and the measurement J ,  Q(~) is the state we can "a priori" attribute 
to our system, before knowing the result of the measurement. 

Let us consider now the case when in (1,3) the set B shrinks to an 
"infinitesimally small" set do) around the value ~o: the quantity 

J (&o) [d  
~(~o) - Wr{Y(da~)[Q] } (1.4) 

represents the state conditioned upon the result o~ Eden. The quantity Q(o~) 
is the state one can attribute to those systems for which the result co has 
actually been found in the measurement and for this reason we call it the 
a posteriori state. 
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More precisely, a family of statistical operators {0(~o), o9 el2} is said to 
be a family of a posteriori states (Ozawa, 1985) for an initial state 0 and an 
instrument J with value space (f~, ~) if (a) the function o9~0(o9) is 
strongly measurable with respect to the probability measure 

P(BIo) = Tr(J(B)[o] } (1.5) 

for the observable associated with the instrument J and (b) Va~B(df),  
VBeZ, 

fB Tr{ao(og) } = Tr{a•(B)[o] } (1.6) P( do9 Io) 

For any instrument J and any premeasurement state O, a family of a 
posteriori states 0(o9) always exists (unique up to equivalence). Let us note 
that by definition the link between a priori and a posteriori states is given 
by 

e(•) -= J(n)[Q] = fn e(c~ P(doglQ) (1.7) 

We can say that the a posteriori states Q(o~) are a "demixture" of the a 
priori state e(f~). Let us stress that (1.6) defines the a posteriori states once 
the instrument J and the premeasurement state e are given. On the 
contrary, if Q(og) and P(dog]0) are given for any e, (1.6) allows us to 
reconstruct the instrument J .  

A particularly important case is when the instrument J has a "den- 
sity" with respect to a numerical measure. Let Q(dog) be a numerical 
measure (possibly a probability measure) on the value space (f~, Z) and 
~(o9) a family of positive maps on Y'(Yf) such that the instrument J can 
be written as 

:(B)[o] = .18 :-(o9)[0] Q(dog), B~Z,  (1.8) 

Then, by calling 0 the premeasurement state, we define the nonnormalized 
a posteriori (NNAP) states o-(o9) by 

a(og) := ff(og)[q] (1.9) 

and the probability density pQ(og) by 

Pc(C~ Tr{a(og)} (1.10) 

The definitions are such that probabilities and a posteriori states are given 
by 

P(doglQ) --- Po(og) Q(dog), q(og) _ a(og) (1.11) 
Pe(og) 
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while the instrument is given by 

J ( e ) [ 4 ]  = a(o~) Q(doJ) = 4(o~) f ( d o l 4 )  (1.12) 
B 

From the discussion above and the previous formulas we see that every- 
thing can be reconstructed once we have the NNAP states. 

Finally, we recall that Ozawa (1984) proved that any instrument can 
be realized via an "indirect measurement" scheme. Let ~ 0  be the Hilbert 
space of an auxiliary system (probe, measuring apparatus, quantum chan- 
nel . . . .  ), Tr io  be the partial trace over Jr 4o be a state on ~fo (state of 
the probe), U be a unitary operator on r162 | ~ 0  (dynamics of system and 
probe), and Po(dco) be a projection-valued measure on ~fo (observable of 
the probe). Then, any instrument J on g - (~ )  can be represented as 

J(dco)[4] = Trw o { U(4 | 4o) V*(~ | P0 (do)) } (1.13) 

We can say that a measurement on our system can be always realized by 
letting the system interact with a probe for a certain time and then 
measuring some observable of the probe. By elimination of the degrees of 
freedom of the probe, via partial trace, we get the instrument. 

2. MEASUREMENTS CONTINUOUS IN TIME 

The theory of continuous measurements in the case of quantum point 
processes (typically, counting of particles) was initiated by Davies (1969, 
1970, 1970, while the general formulation of continuous measurements of 
any kind of observables is due to the Milan group (Barchielli et al., 1982, 
1983, 1985; Lupieri, 1983). The idea is to use families of instruments to 
represent measurements continuous in time. By following Barchielli et aL 
(1982, 1983, 1985) and Holevo (1988, 1989), we formalize continuous 
measurements by introducing a "trajectory space" ~ [ the space of all 
real-valued--or vector-valued--functions y(t) on ~], equipped by a family 
of a-algebras of subsets Z~, a < b s ~  [a-algebra generated by the incre- 
ments y(t) - y(s), a < s <-t <-b]. Then, the measurement in the interval 
(a, b] is represented by an instrument ~ on the value space (~, Z~). The 
various instruments have to be compatible in the sense that a measurement 
in the interval (a, c] must be decomposable in a measurement in the interval 
(a, b] followed by a measurement in the interval (b, c], a < b < c. Precisely, 
Va, b, c ~ ,  a < b < c, VE~Z~, VF~Z~, we must have 

J~(F)  o J~(E) = ~ ( E  c~ F) (2.1) 

Note that Ec~F~Z'~. 
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A large class of such families of instruments has been constructed by 
using Fourier transform techniques (Barchielli et al., 1982, 1983, 1985; 
Lupieri, 1983; Barchielli and Lupieri, 1985a,b; Holevo, 1988, 1989). An- 
other way to obtain continuous measurements is by the indirect measure- 
ment scheme described by equation (1.13) (Barchielli and Lupieri, 1985a,b; 
Barchielli, 1986a); the mathematical techniques one needs in this case are 
based on "quantum stochastic calculus" (Hudson and Parthasarathy, 
1984). This approach is particularly suited for describing detection of 
photons (direct, heterOdyne, homodyne detection) (Barchielli, 1987, 1988, 
1990, 1991, 1993). Now the system is a photoemissive source (an atom, an 
optical cavity . . . .  ) and the probe is the electromagnetic field in free space; 
the projection-valued measure in equation (1.13) is now an observable of 
the field such as number of photons or the field itself. The point is that one 
can realize these observables through commuting time-dependent self-ad- 
joint operators (let us stress: these operators at different times commute); 
in other words, one can obtain continuous measurements in the traditional 
formulation of quantum mechanics. 

While the "filtering" equation for a posteriori states was originally 
obtained in Belavkin (1988) by starting from the "quantum stochastic" 
formulation of Barchielli and Lupieri (1985a,b), the approach via a posteri- 
ori states and NNAP states gives an alternative way of constructing 
continuous measurements (Barchielli and Belavkin, 1991; Barchielli and 
Holevo, n.d.). 

The idea of this last approach is to give a reference measure Q (in the 
simplest cases the probability measure of a Poisson or a Wiener process) 
and then a family of NNAP states at =at(m; Q) [cf. equations (1.8)- 
(1.12)], depending only on the part of the trajectory ~o up to time t; Q is the 
initial state of the system. The various quantities must be such that the 
equation 

J~(B)[Q] = .f~ a,(eo; Q) Q(&o), BeXto, (2.2) 

[cf. equation (1.12)] truly defines an instrument J ~  on (f~, Y~). Then, the 
a posteriori states Q, are obtained by normalization 

Q, = o5/Tr{o-t } (2.3) 

Typically, the NNAP states at are given through a linear stochastic 
differential equation; then, the a posteriori states Q, satisfy a nonlinear 
stochastic differential equation. While very general cases can be treated by 
using the general theory of It6's stochastic calculus, in the next section we 
present a simple example of diffusive type; a presentation of the counting 
(or jump) case can be found in Barchielli and Belavkin (1991), where it is 
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also shown how to obtain the diffusive case from the jump case via 
suitable limits. 

3. "A POSTERIORI" STATES (DIFFUSIVE PROCESSES) 

In this section we develop a theory describing the continuous mea- 
surement of d observables; we shall use a heuristic mathematical language, 
but all statements could be made rigorous. According to the discussion in 
Section 1, the first step is to introduce a reference measure Q; we take it 
to be the probability measure for d independent standard Wiener pro- 
cesses. A typical trajectory IV+.(t) of these processes is a nondifferentiable 
continuous function such that 

Wj(0) =0,  dWj(t) dWi(t ) = 6 j i d t  , dt dWj(t) = 0  (3.1) 

The increments are always intended to point into the future, dWj(t)..= 
Wj(t + dr) - Wj(t) (It6's definition of stochastic integrals). 

The second step is to give an equation for the NNAP states at. We 
first write the equation and then we discuss its properties. Let us consider 
the It6 stochastic differential equation 

d 

dat = Ae[at] dt + ~ (Ljff t + atL* ) dWj(t) (3.2) 
j = l  

where 

+ j ~ (  1 {L~'Lk, o'}) (3.3) Aa[o -] . . =  ~ao[a ] LkaL* -- -~ 
. =  

~o[al .'= - i[H, al + ~ RraR* - {R*Rr, a} (3.4) 

Lk, H, Rr eB(~f), H = H*, {a, b} :=ab + ba. 
Let us consider as initial condition of equation (3.2) a o = Q, where ~ 

is the initial state of the system. A first property of equation (3.2) is that 
its solution depends only on the past (it is adapted) and therefore at and 
dWj(t) are independent (the Wiener process has independent increments). 
A second property is that indeed our equation transforms positive trace- 
class operators into positive trace-class operators. 

Let us denote by ~:Q the mathematical expectation with respect to the 
probability measure Q: Ee [ f ]  =Snf(e~)Q(dc~); we recall that l:e[Wj(t)] 
=0.  According to the first part of equation (1.12) with B = ~ ,  the 
quantity 

O, .'= Eo[at] (3.5) 
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is the a priori state at time t. By taking the expectation of  both sides of  
equation (3.2), it turns out that the a priori states satisfy the master 
equation 

d 
dt Ot = Ae[O,] (3.6) 

with Liouvillian (3.3). In the mean, the system undergoes a dissipative 
dynamics. 

Let us now take the trace of both sides of  equation (3.2). By noting 
that Tr{Ae[a]} = 0, we get 

d 

dp, =p,  ~ mj(t) dWj(t), p,..=Tr{a,}, mj( t ) :=2ReTr{L je t }  (3.7) 
j = l  

Qt is the a posteriori state defined by equation (2.3). By taking the 
expectation of  equation (3.7), we see that FQ[pt ] is a constant. Because p, 
is positive and 0:Q[p0 ] = 1, we have that Pt is a probability density with 
respect to Q. According to equations (1.10) and (1.11), the probability 
measure of the measuring process is 

Pt(do)lQ ) ..=p,(o~) Q(do9) (3.8) 

Pt is the measure on the a-algebra of trajectories up to time t and 
P .'= limt~ +~ P, gives the probability measure on the space of  all trajecto- 
ries. 

Let us now consider equation (3.2) with initial condition as = Q at time 
s and call A~'[Q] its solution. By the first of  equations (1.12) we define for 
EeEts, s < t, 

Jt~(E)[e] = .le Ats(C~ Q(d(o) (3.9) 

It turns out that indeed { j r  } is a family of  instruments satisfying equation 
(2.1). Note that J~(E)[0] = ~ at(co) Q(d(o). 

Finally, let us find an equation for the a posteriori states (2.3). By It6's 
formula, from equation (3.7) we obtain 

d 

d p ; '  = p;-' ~ [mj(t) 2 dt - mj(t) dWj(t)] (3.10) 
j = l  

and from equations (3.2) and (3.10) we obtain 
d 

dQ, = ha[e,] dt + ~ [Ljp, + etL* - mj(t)Qt][dWj(t) - my(t) dt] (3.11) 
j = l  

This is a nonlinear equation because the mj(t) depend on Qt itself. An 
important point is that, according to equation (1.5) and the second of 
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equations (1.12), the a posteriori states are distributed with probability 
law P. 

By using It6's table (3.1), we can compute the differential of p, Wj(t); 
we get 

d(p, ~( t ) )  =p, [6ji + ~(t)mi(t)] dWi(t) + mj(t) dt (3.12) 
i t 

By the fact that the various processes are adapted, we have IFp[Wj(t)] = 
~Q[Wi (t)p,] and 

d 
dt ~:e [ Wj (t)] = ~e [mj (t)] (3.13) 

First, this equation and equation (3.11) show that ~:z,[Qt] satisfies the master 
equation (3.6) and, by taking the same initial condition, we get 

O, = ~:e[~t] (3.14) 

which is the analog of equation (1.7). Moreover, by equation (3.13) and 
the theory of the Girsanov transform (Gatarek and Gisin, 1991), we have 
that under the probability law P(. 14) the processes 

B/(t),= f [dWj(s) -mj(s )  ds] (3.15) 
d(0,t] 

are d independent standard Wiener processes. 
By equations (3.7) -(3.9) we have that the results of the measurements 

{J~} are distributed with law P. Due to the arbitrariness of the initial 
condition Wj (0) = 0, the output of the measurement can be identified with 
the increments of the processes Wj(t) under the law P, or better, the 
measured observables are the time derivatives dWj(t)/dt (to be understood 
in the sense of generalized stochastic processes) (Barchielli et al., 1982, 
1983, 1985). By putting together equations (3.6), (3.13), and (3.14) and the 
last of equation (3.7) we get 

d 
dt Ee [ W/(t)] = Tr{ (L/+ L* )e zet[Q] } (3.16) 

We can interpret this equation by saying that we are making a continuous 
imprecise measurement of the observables represented by the self-adjoint 
operators L / +  L*, which are in general noncommuting. Moreover, we can 
read equation (3.15) as "the observed quantities Wj (t) are decomposed into 
the sum of the white noises Bj(t) plus the processes mj(t)." 

Equations (3.2) and (3.11) have an equivalent pure-state version. In 
the case that 5e o of (3.4) is not of purely Hamiltonian form we need further 
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independent standard Wiener processes W~(t). The pure-state version of 
equation (3.2) is 

dr y=, LydWj( t )+~ iH q-~j~__, L * L j + ~  R*R~ dt ~1 t 

(3.17) 

Indeed, by setting ~t = [~t  ) ( ~ t  [, from It6's table (3.1) and equation (3.17) 
we obtain 

d 
dr,  = ~.~a[~,] dt + Z (Lift, + ~tL* ) dWj(t) + Z (R,~, + ~,R*r ) dW,(t) 

j = l  r 
(3.18) 

By taking the stochastic mean over the auxiliary Wiener processes Wr(t) we 
end up with equation (3.2). 

By setting ~t = ~t /]]~l t  11, we obtain 

d@ = i H  d t  + 2 [L j  1 ^ -- -- ffmj (t)] dYj(t) 
j = l  

where 

+ Z [R~ - �89 ~(t)] dZXt) 
r 

1 a 
-- ~ j~= , [L * Lj - rhj(t)Lj + �88 rhj(t) 21 dt 

1 * - dt}~t - f f ~  [g~ Rr ~(t)R~ +�88 2] (3.19) 

rhj (t) = 2 Re(if ,  ILjfft ), t~r(t) = 2 Re(fi t  [Rrff,) (3.20) 

d~.(t) = dWj(t) - rhj(t) dt, dZ~(t) = dWr(t) - t~,(t) dt (3.21) 

Equation (3.19) is the pure-state version of equation (3.11). Indeed, by 
setting 0, = I~ 7, ) ( i f ,  I, we obtain 

d 
d~t = L~a[Q,] dt q- ~ [Lj~ t + OiL? - thj(t)~t] dYj(t) 

j = l  

+ ~ [R~O, + O,R*~ - ~r(t)O,] dZ,(t) (3.22) 
r 

By taking the conditional expectation with respect to the a-algebra gener- 
ated by the processes Yj(t), we have dZ~(t)~O, thj(t)~mj(t)  and we 
obtain equation (3.11). 
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It is interesting to note that the first example o f  the type o f  equat ion 
(3.19) (diffusive case) was introduced by Gisin (1984) in the context  o f  
dynamical  reduct ion theories, while examples o f  the other  equat ions (lin- 
ear and nonlinear  versions), including the case o f  count ing processes 
( jump case), were introduced by Belavkin (1988, 1989a) in the context  o f  
cont inuous  measurement  theory; for  the general case, see Belavkin (1990c) 
and Barchielli and Holevo (n.d.). Moreover ,  equat ions like (3.19) are now 
used for numerical simulations o f  the corresponding master  equat ion (3.6) 
(Gisin and Percival, 1992a, b). Somewhat  similar simulations are used in 
the jump  case (Carmichael,  1993; D u m  et al., 1992a,b; Gardiner  et al., 
1992; Molmer  et aL, 1993), but  wi thout  explicit reference to a stochastic 
equation. 
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